Bounding the Number of Conjugacy Classes of a Permutation Group
نویسنده
چکیده
For a finite group G, let k(G) denote the number of conjugacy classes of G. If G is a finite permutation group of degree n > 2, then k(G) ≤ 3(n−1)/2. This is an extension of a theorem of Kovács and Robinson and in turn of Riese and Schmid. If N is a normal subgroup of a completely reducible subgroup of GL(n, q), then k(N) ≤ q. Similarly, if N is a normal subgroup of a primitive subgroup of Sn, then k(N) ≤ p(n) where p(n) is the number of partitions of n. These improve results of Liebeck
منابع مشابه
COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
متن کاملFINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES
Let G be a finite group and Z(G) be the center of G. For a subset A of G, we define kG(A), the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them.
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملThe ranks of the classes of $A_{10}$
Let $G $ be a finite group and $X$ be a conjugacy class of $G.$ The rank of $X$ in $G,$ denoted by $rank(G{:}X),$ is defined to be the minimal number of elements of $X$ generating $G.$ In this paper we establish the ranks of all the conjugacy classes of elements for simple alternating group $A_{10}$ using the structure constants method and other results established in [A.B.M. Bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008